Mental Well-Being
Introduction.
Prediction of future Short Form 12 Mental Component Score (SF-12 MCS).
Methods
What methods are used? Justification due to output data type. explanation of model output.
Data
What variables are included? Why is this output chosen. What explanatory variables are used and why are they chosen
Results
What are the results. Coefficients tables. diagnostic plots. measures of goodness of fit.
## Linear mixed model fit by REML ['lmerMod']
## Formula: SF_12 ~ time + scale(SF_12_last) + scale(age) + factor(sex) +
## relevel(factor(ethnicity), ref = "WBI") + relevel(factor(region),
## ref = "Scotland") + relevel(factor(education_state), ref = "1") +
## scale(hh_income) + factor(housing_quality) + factor(neighbourhood_safety) +
## factor(loneliness) + scale(nutrition_quality) + scale(ncigs) + I(factor(ncigs > 0)) + (1 | pidp)
## Data: data
## Weights: weight
##
## REML criterion at convergence: Inf
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -52.450 -0.247 0.105 0.405 7.284
##
## Random effects:
## Groups Name Variance Std.Dev.
## pidp (Intercept) 0.0014178 0.03765
## Residual 0.0004727 0.02174
## Number of obs: 59676, groups: pidp, 30476
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.918e+00 8.278e-01 4.733
## time -1.945e-05 4.106e-04 -0.047
## scale(SF_12_last) 1.191e-01 1.071e-03 111.194
## scale(age) 2.128e-02 1.128e-03 18.863
## factor(sex)Male 2.104e-02 2.035e-03 10.337
## relevel(factor(ethnicity), ref = "WBI")BAN -6.030e-03 1.362e-02 -0.443
## relevel(factor(ethnicity), ref = "WBI")BLA 3.439e-02 8.473e-03 4.058
## relevel(factor(ethnicity), ref = "WBI")BLC 1.939e-02 1.134e-02 1.711
## relevel(factor(ethnicity), ref = "WBI")CHI 1.890e-02 1.439e-02 1.313
## relevel(factor(ethnicity), ref = "WBI")IND 5.288e-03 6.472e-03 0.817
## relevel(factor(ethnicity), ref = "WBI")MIX 1.870e-04 8.407e-03 0.022
## relevel(factor(ethnicity), ref = "WBI")OAS -7.198e-03 9.122e-03 -0.789
## relevel(factor(ethnicity), ref = "WBI")OBL 3.491e-03 3.059e-02 0.114
## relevel(factor(ethnicity), ref = "WBI")OTH -2.640e-02 1.515e-02 -1.743
## relevel(factor(ethnicity), ref = "WBI")PAK 6.466e-03 7.903e-03 0.818
## relevel(factor(ethnicity), ref = "WBI")WHO 1.346e-02 4.761e-03 2.826
## relevel(factor(region), ref = "Scotland")East Midlands 9.260e-03 5.140e-03 1.802
## relevel(factor(region), ref = "Scotland")East of England 4.998e-03 4.849e-03 1.031
## relevel(factor(region), ref = "Scotland")London -4.358e-03 4.915e-03 -0.887
## relevel(factor(region), ref = "Scotland")North East -3.665e-03 6.078e-03 -0.603
## relevel(factor(region), ref = "Scotland")North West 1.663e-03 4.752e-03 0.350
## relevel(factor(region), ref = "Scotland")South East 4.518e-04 4.534e-03 0.100
## relevel(factor(region), ref = "Scotland")South West -2.624e-03 4.972e-03 -0.528
## relevel(factor(region), ref = "Scotland")Wales -7.163e-03 6.253e-03 -1.145
## relevel(factor(region), ref = "Scotland")West Midlands -3.927e-03 5.005e-03 -0.785
## relevel(factor(region), ref = "Scotland")Yorkshire and The Humber 1.097e-03 4.960e-03 0.221
## relevel(factor(education_state), ref = "1")0 -1.857e-03 7.559e-03 -0.246
## relevel(factor(education_state), ref = "1")2 4.328e-03 7.580e-03 0.571
## relevel(factor(education_state), ref = "1")3 -1.710e-03 7.934e-03 -0.215
## relevel(factor(education_state), ref = "1")5 8.216e-03 7.995e-03 1.028
## relevel(factor(education_state), ref = "1")6 2.264e-03 7.670e-03 0.295
## relevel(factor(education_state), ref = "1")7 8.499e-04 7.834e-03 0.108
## scale(hh_income) 7.967e-03 1.033e-03 7.716
## factor(housing_quality)Low -7.089e-03 3.078e-03 -2.304
## factor(housing_quality)Medium 5.578e-03 3.648e-03 1.529
## factor(neighbourhood_safety)2 4.850e-03 2.389e-03 2.030
## factor(neighbourhood_safety)3 1.192e-02 3.196e-03 3.730
## factor(loneliness)2 -7.955e-02 2.372e-03 -33.534
## factor(loneliness)3 -2.547e-01 4.161e-03 -61.198
## scale(nutrition_quality) 7.067e-03 1.019e-03 6.932
## scale(ncigs) -6.203e-03 1.476e-03 -4.203
## I(factor(ncigs > 0))TRUE -1.435e-02 4.565e-03 -3.144
##
## Correlation matrix not shown by default, as p = 42 > 12.
## Use print(summary(model), correlation=TRUE) or
## vcov(summary(model)) if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## Gradient contains NAs