Mental Well-Being

Introduction.

Prediction of future Short Form 12 Mental Component Score (SF-12 MCS).

Methods

What methods are used? Justification due to output data type. explanation of model output.

Data

What variables are included? Why is this output chosen. What explanatory variables are used and why are they chosen

Results

What are the results. Coefficients tables. diagnostic plots. measures of goodness of fit.

plot of chunk SF12_Output

Fig. 11 plot of chunk SF12_Output

## Linear mixed model fit by REML ['lmerMod']
## Formula: SF_12 ~ time + scale(SF_12_last) + scale(age) + factor(sex) +
##     relevel(factor(ethnicity), ref = "WBI") + relevel(factor(region),
##     ref = "Scotland") + relevel(factor(education_state), ref = "1") +
##     scale(hh_income) + factor(housing_quality) + factor(neighbourhood_safety) +
##     factor(loneliness) + scale(nutrition_quality) + scale(ncigs) +      I(factor(ncigs > 0)) + (1 | pidp)
##    Data: data
## Weights: weight
##
## REML criterion at convergence: Inf
##
## Scaled residuals:
##     Min      1Q  Median      3Q     Max
## -52.450  -0.247   0.105   0.405   7.284
##
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  pidp     (Intercept) 0.0014178 0.03765
##  Residual             0.0004727 0.02174
## Number of obs: 59676, groups:  pidp, 30476
##
## Fixed effects:
##                                                                     Estimate Std. Error t value
## (Intercept)                                                        3.918e+00  8.278e-01   4.733
## time                                                              -1.945e-05  4.106e-04  -0.047
## scale(SF_12_last)                                                  1.191e-01  1.071e-03 111.194
## scale(age)                                                         2.128e-02  1.128e-03  18.863
## factor(sex)Male                                                    2.104e-02  2.035e-03  10.337
## relevel(factor(ethnicity), ref = "WBI")BAN                        -6.030e-03  1.362e-02  -0.443
## relevel(factor(ethnicity), ref = "WBI")BLA                         3.439e-02  8.473e-03   4.058
## relevel(factor(ethnicity), ref = "WBI")BLC                         1.939e-02  1.134e-02   1.711
## relevel(factor(ethnicity), ref = "WBI")CHI                         1.890e-02  1.439e-02   1.313
## relevel(factor(ethnicity), ref = "WBI")IND                         5.288e-03  6.472e-03   0.817
## relevel(factor(ethnicity), ref = "WBI")MIX                         1.870e-04  8.407e-03   0.022
## relevel(factor(ethnicity), ref = "WBI")OAS                        -7.198e-03  9.122e-03  -0.789
## relevel(factor(ethnicity), ref = "WBI")OBL                         3.491e-03  3.059e-02   0.114
## relevel(factor(ethnicity), ref = "WBI")OTH                        -2.640e-02  1.515e-02  -1.743
## relevel(factor(ethnicity), ref = "WBI")PAK                         6.466e-03  7.903e-03   0.818
## relevel(factor(ethnicity), ref = "WBI")WHO                         1.346e-02  4.761e-03   2.826
## relevel(factor(region), ref = "Scotland")East Midlands             9.260e-03  5.140e-03   1.802
## relevel(factor(region), ref = "Scotland")East of England           4.998e-03  4.849e-03   1.031
## relevel(factor(region), ref = "Scotland")London                   -4.358e-03  4.915e-03  -0.887
## relevel(factor(region), ref = "Scotland")North East               -3.665e-03  6.078e-03  -0.603
## relevel(factor(region), ref = "Scotland")North West                1.663e-03  4.752e-03   0.350
## relevel(factor(region), ref = "Scotland")South East                4.518e-04  4.534e-03   0.100
## relevel(factor(region), ref = "Scotland")South West               -2.624e-03  4.972e-03  -0.528
## relevel(factor(region), ref = "Scotland")Wales                    -7.163e-03  6.253e-03  -1.145
## relevel(factor(region), ref = "Scotland")West Midlands            -3.927e-03  5.005e-03  -0.785
## relevel(factor(region), ref = "Scotland")Yorkshire and The Humber  1.097e-03  4.960e-03   0.221
## relevel(factor(education_state), ref = "1")0                      -1.857e-03  7.559e-03  -0.246
## relevel(factor(education_state), ref = "1")2                       4.328e-03  7.580e-03   0.571
## relevel(factor(education_state), ref = "1")3                      -1.710e-03  7.934e-03  -0.215
## relevel(factor(education_state), ref = "1")5                       8.216e-03  7.995e-03   1.028
## relevel(factor(education_state), ref = "1")6                       2.264e-03  7.670e-03   0.295
## relevel(factor(education_state), ref = "1")7                       8.499e-04  7.834e-03   0.108
## scale(hh_income)                                                   7.967e-03  1.033e-03   7.716
## factor(housing_quality)Low                                        -7.089e-03  3.078e-03  -2.304
## factor(housing_quality)Medium                                      5.578e-03  3.648e-03   1.529
## factor(neighbourhood_safety)2                                      4.850e-03  2.389e-03   2.030
## factor(neighbourhood_safety)3                                      1.192e-02  3.196e-03   3.730
## factor(loneliness)2                                               -7.955e-02  2.372e-03 -33.534
## factor(loneliness)3                                               -2.547e-01  4.161e-03 -61.198
## scale(nutrition_quality)                                           7.067e-03  1.019e-03   6.932
## scale(ncigs)                                                      -6.203e-03  1.476e-03  -4.203
## I(factor(ncigs > 0))TRUE                                          -1.435e-02  4.565e-03  -3.144
##
## Correlation matrix not shown by default, as p = 42 > 12.
## Use print(summary(model), correlation=TRUE)  or
##     vcov(summary(model))        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## Gradient contains NAs
plot of chunk SF12_Output

Fig. 12 plot of chunk SF12_Output

References